
<u>28.1.21</u>

LI: To apply my knowledge to solve reasoning problems

Rosie writes,	l agree, remainder 1	Whitney is thinking of a 2-digit number	Whitney is thinking
$85 \div 3 = 28 \text{ r} 1$	means there is 1 left over, 85 is one	that is less than 50	of 28
She says 85 must be 1 away from a multiple of 3 Do you agree?	more than 84 which is a multiple of 3	When it is divided by 2, there is no remainder.	
		When it is divided by 3, there is a	
37 sweets are shared between 4 friends.	Alex is correct as	remainder of 1	
How many sweets are left over?	there will be one remaining sweet.	When it is divided by 5, there is a	
Four children attempt to solve this	Mo has found how	remainder of 3	
problem.	many sweets each friend will receive.	What number is Whitney thinking of?	
Alex says it's 1	Eva has written the		
Mo says it's 9	answer to the		
• Eva says it's 9 r 1	calculation.		
 Jack says it's 8 r 5 	Jack has found a		
Cap you available who is correct and the	remainder that is larger than the		
Can you explain who is correct and the mistakes other people have made?	divisor so is		
mistakes other people have made?	incorrect.		

You have 12 counters and the place value grid. You must use all 12 counters to complete the following.

Create a 3-digit number divisible by 2 Create a 3-digit number divisible by 3 Create a 3-digit number divisible by 4 Create a 3-digit number divisible by 5 Can you find a 3-digit number divisible by 6, 7, 8 or 9? 2: Any even number

3: Any 3-digit number (as the digits add up to 12, a multiple of 3)

4: A number where the last two digits are a multiple of 4

5: Any number with 0 or 5 in the ones column.

Possible answers

6: Any even number

7: 714, 8: 840

9: impossible

Here are the meal choices in the school canteen.			There are 24 meal combinations	
Starter	Main	Dessert	altogether. $2 \times 4 \times 3 = 24$	
Soup Garlic Bread	Pasta Chicken Beef Salad	Cake Ice-cream Fruit Salad	20 combinations $1 \times 1 \times 20$ $1 \times 2 \times 10$ $1 \times 4 \times 5$	
There are 2 choices of starter, 4 choices of main and 3 choices of dessert. How many meal combinations can you find? Can you use a systematic approach? Can you represent the combinations in a multiplication?			$1 \times 4 \times 5$ $2 \times 2 \times 5$ Accept all other variations of these four multiplications e.g. $1 \times 20 \times 1$	
If there were 20 many starters, monthere be?				

Alex has 6 T-shirts and 4 pairs of shorts. Dexter has 12 T-shirts and 2 pairs of shorts. Who has the most combinations of Tshirts and shorts? Explain your answer.

Alex and Dexter have the same number of combinations of Tshirts and shorts.